Vagaries of density functional theory of the liquid-vapor interface
J.K. Percus
Physica A: Statistical Mechanics and its Applications, 1991, vol. 172, issue 1, 1-16
Abstract:
The (direct) potential functional and (inverse) density functional formulations of classical equilibrium statistical mechanics are reviewed, and their local thermodynamic limits presented. Both are extended, in particular for interfacial structure, in Van der Waals mean field theory. The direct generator, the grand potential, is transformed by the Kac-Siegert approach and the profile equation approximated. The indirect free energy functional is expanded in interaction strength. Both approaches fail to combine consistency with known profile softening under weak external fields. The Kac-Siegert form is then rewritten in terms of a distribution of interfacial surfaces alone for a special model, and transformed to inverse format for a two-dimensional system, yielding a free energy density functional which involves a deaveraged density field, and has the expected interfacial properties.
Date: 1991
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719190307X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:172:y:1991:i:1:p:1-16
DOI: 10.1016/0378-4371(91)90307-X
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().