Statistical foundation of macroscopic balances for liquid crystals in alignment tensor formulation
S. Blenk,
H. Ehrentraut and
W. Muschik
Physica A: Statistical Mechanics and its Applications, 1991, vol. 174, issue 1, 119-138
Abstract:
Starting out with the global balance equations of mass, momentum, angular momentum, and energy formulated on the so-called ten-dimensional doubled phase of position, velocity, orientation, and orientation change velocity, the appropriate local balances are derived, which are defined on the five-dimensional half of the doubled phase space including time, position, and the microscopic director. These so-called orientation balance nematic liquid crystals whose alignment need not be uniform as it is presupposed in theories using macroscopic director fields. In R3 we get the usual phenomenological balance equations of micropolar media having the advantage that the balanced quantities are defined statistically. By expanding the orientation distribution function into a series of multipoles we get alignment tensor fields and an additional alignment tensor balance equation on R3.
Date: 1991
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719190420H
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:174:y:1991:i:1:p:119-138
DOI: 10.1016/0378-4371(91)90420-H
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().