Numerical solution of the Swift-Hohenberg equation in two dimensions
Hao-wen Xi,
Jorge Viñals and
J.D. Gunton
Physica A: Statistical Mechanics and its Applications, 1991, vol. 177, issue 1, 356-365
Abstract:
The Swift-Hohenberg equation with either a stochastic or a constant forcing term has been solved numerically in two spatial dimensions. The parameters that enter the equation have been chosen to match the experiments on Rayleigh-Bénard convection by Meyer et al. [C.W. Meyer, G. Ahlers and D.S. Cannell, Phys. Rev. Lett. 59 (1987) 1577]. Our numerical results for the convective heat current as a function of time fit the experiments well (the fitting parameter is the amplitude of the forcing term). We find a value of F = 5.52 × 10−6 for the stochastic case, compared to Fth = 1.06 × 10−10, the value obtained from fluctuation theory. The structure of the convective pattern also depends on the type of forcing considered. A constant forcing induces a roll-like pattern that reflects the geometry of the sidewalls. A stochastic forcing is seen to induce a random, cellular pattern.
Date: 1991
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719190173A
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:177:y:1991:i:1:p:356-365
DOI: 10.1016/0378-4371(91)90173-A
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().