Numerical solution of the Kardar-Parisi-Zhang equation in one, two and three dimensions
Keye Moser,
János Kertész and
Dietrich E. Wolf
Physica A: Statistical Mechanics and its Applications, 1991, vol. 178, issue 2, 215-226
Abstract:
On a course-grained level a family of microscopic growth processes may be described by a stochastic differential equation, which is solved numerically for surface dimensions d = 1, 2 and 3. Dimensional analysis shows that the spatial discretization parameter has the meaning of an effective coupling constant. The numerical stability of the Euler integration scheme is discussed. For the strong coupling exponents β defined by surface width ∼ timeβ the following effective values were obtained: β(d = 1) = 0.330 ± 0.004 and β(d = 2) = 0.24 ± 0.005. Considering the width and its ensemble fluctuations at constant dimensionless time the transition between strong and weak coupling phases is located in d = 3. For the largest coupling for which reliable data are available we obtain an effective exponent β close to the best estimates on discrete models, β(d = 3) ∼ 0.17.
Date: 1991
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437191900177
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:178:y:1991:i:2:p:215-226
DOI: 10.1016/0378-4371(91)90017-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().