A model for a multi-class classification machine
Albrecht Rau and
Jean-Pierre Nadal ()
Physica A: Statistical Mechanics and its Applications, 1992, vol. 185, issue 1, 428-432
Abstract:
We consider the properties of multi-class neural networks, where each neuron can be in several different states. The motivations for considering such systems are manifold. In image processing for example, the different states correspond to the different grey tone levels. Another multi-class classification task implemented on a feed-forward network is the analysis of DNA sequences or the prediction of the secondary structure of proteins from the sequence of amino acids.
Date: 1992
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437192904848
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:185:y:1992:i:1:p:428-432
DOI: 10.1016/0378-4371(92)90484-8
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().