Self-duality of the O(2) gauge transformation and the phase structure of vertex models
L. Šamaj and
M. Kolesík
Physica A: Statistical Mechanics and its Applications, 1993, vol. 193, issue 1, 157-168
Abstract:
For the symmetric two-state vertex model formulated on a lattice with an arbitrary coordination number q, we construct a variational series expansion of the free energy with a free gauge parameter playing the role of the variational variable. In the lowest order of the variational series expansion we obtain the Bethe approximation. Its analytical treatment provides a new method of searching for the self-dual manifolds for lattices of higher coordination number q and gives some information about the internal structure of the self-dual manifolds where the first- and second-order phase transitions take place. The results are systematically improved by considering higher-order terms in the variational series expansion.
Date: 1993
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719390222P
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:193:y:1993:i:1:p:157-168
DOI: 10.1016/0378-4371(93)90222-P
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().