EconPapers    
Economics at your fingertips  
 

Structure and dynamics of yukawa systems

N. Pistoor and K. Kremer

Physica A: Statistical Mechanics and its Applications, 1993, vol. 201, issue 1, 171-177

Abstract: Results of molecular dynamics simulations modelling two component charge stabilized colloidal particles interacting via a Yukawa potential are presented. After cooling, the systems freeze into either substitutionally disordered imperfect crystals or into glasslike states. This freezing is characterized by the divergence of a suitable correlation time due to loss of ergodicity. Describing the structure by bond correlation functions, local orientational ordering is observed in the glassy states which is not present in the liquid. In the liquid the diffusion constant obeys an Arrhenius law. As can be deduced from the van Hove functions, in the crystal the particles only oscillate around their mean positions, whereas in the glassy state some particles move by occupying neighbouring sites during local rearrangements.

Date: 1993
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719390414Y
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:201:y:1993:i:1:p:171-177

DOI: 10.1016/0378-4371(93)90414-Y

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:201:y:1993:i:1:p:171-177