Dynamics of the lipid-bilayer membrane taking a vesicle shape
Fujitani Youhei
Physica A: Statistical Mechanics and its Applications, 1994, vol. 203, issue 2, 214-242
Abstract:
The lipid-bilayer membrane is treated as a two-dimensional viscous fluid with a restoring force against bending. We present a general theory of the dynamics of such a fluid, and as an application we calculate the damping coefficient of slow overdamped motion of the membrane which takes a spherical-vesicle shape in equilibrium. Discussions of the in-plane compression modulus and the membrane continuity in some recent theories are inappropriate for the lipid-bilayer membrane. We also find that membrane viscosity μ is important as compared to viscosities, μ̄ and μ̧, of the inner fluid and the outer fluid unless μ is much smaller than Fr and μ̧r0 (r0 being the vesicle radius).
Date: 1994
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437194901538
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:203:y:1994:i:2:p:214-242
DOI: 10.1016/0378-4371(94)90153-8
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().