Boundary-induced phase transitions in equilibrium and non-equilibrium systems
Malte Henkel and
Gunter Schütz
Physica A: Statistical Mechanics and its Applications, 1994, vol. 206, issue 1, 187-195
Abstract:
Boundary conditions may change the phase diagram of non-equilibrium statistical systems like the one-dimensional asymmetric simple exclusion process with and without particle number conservation. Using the quantum Hamiltonian approach, the model is mapped onto an XXZ quantum chain and solved using the Bethe ansatz. This system is related to a two-dimensional vertex model in thermal equilibrium. The phase transition caused by a point-like boundary defect in the dynamics of the one-dimensional exclusion model is in the same universality class as a continuous (bulk) phase transition of the two-dimensional vertex model caused by a line defect at its boundary.
Date: 1994
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437194901244
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:206:y:1994:i:1:p:187-195
DOI: 10.1016/0378-4371(94)90124-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().