Integrable mappings and polynomial growth
S. Boukraa,
J-M. Maillard and
G. Rollet
Physica A: Statistical Mechanics and its Applications, 1994, vol. 209, issue 1, 162-222
Abstract:
We describe birational representations of discrete groups generated by involutions, having their origin in the theory of exactly solvable vertex-models in lattice statistical mechanics. These involutions correspond respectively to two kinds of transformations on q × q matrices: the inversion of the q × q matrix and an (involutive) permutation of the entries of the matrix. We concentrate on the case where these permutations are elementary transpositions of two entries. In this case the birational transformations fall into six different classes. For each class we analyze the factorization properties of the iteration of these transformations. These factorization properties enable to define some canonical homogeneous polynomials associated with these factorization properties. Some mappings yield a polynomial growth of the complexity of the iterations. For three classes the successive iterates, for q = 4, actually lie on elliptic curves. This analysis also provides examples of integrable mappings in arbitrary dimension, even infinite. Moreover, for two classes, the homogeneous polynomials are shown to satisfy non trivial non-linear recurrences. The relations between factorizations of the iterations, the existence of recurrences on one or several variables, as well as the integrability of the mappings are analyzed.
Date: 1994
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437194900558
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:209:y:1994:i:1:p:162-222
DOI: 10.1016/0378-4371(94)90055-8
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().