2D universality of period-doubling bifurcations in 3D conservative reversible mappings
Stavros Komineas,
Michael N. Vrahatis and
Tassos Bountis
Physica A: Statistical Mechanics and its Applications, 1994, vol. 211, issue 2, 218-233
Abstract:
Infinite sequences of period-doubling bifurcations are known to occur generically (i.e. with codimension 1) not only in dissipative 1D systems but also in 2D conservative systems, described by area-preserving mappings. In this paper, we study a 3D volume-preserving, reversible mapping and show that it does possess period 2m(m=1,2,…) orbits, with stability intervals whose length decreases rapidly, with increasing m. Varying one parameter of the system we find that these orbits always bifurcate out of one another with the usual stability exchange and universal properties of period-doubling sequences of 2D-conservative maps. This raises the interesting question whether these 3D reversible maps possess an analytic integral which would render them essentially 2-dimensional.
Date: 1994
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437194000409
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:211:y:1994:i:2:p:218-233
DOI: 10.1016/0378-4371(94)00040-9
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().