EconPapers    
Economics at your fingertips  
 

Brownian motion in the presence of a temperature gradient

A. Pérez-Madrid, J.M. Rubí and P. Mazur

Physica A: Statistical Mechanics and its Applications, 1994, vol. 212, issue 3, 231-238

Abstract: By considering an ensemble of Brownian particles suspended in a heat bath as a thermodynamic system with an internal degree of freedom it is possible to obtain the Fokker-Planck equation for Brownian motion in a temperature gradient, by applying the scheme of non-equilibrium thermodynamics. We recover explicitely the equations derived in particular by Zubarev and Bashkirov using statistical mechanical and kinetic methods. In addition when the temperature gradient does not have an externally imposed magnitude we obtain the differential equation for the temperature field, which is coupled to the Fokker-Planck equation.

Date: 1994
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437194903298
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:212:y:1994:i:3:p:231-238

DOI: 10.1016/0378-4371(94)90329-8

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:212:y:1994:i:3:p:231-238