The droplet size distribution in the late stage of phase separation
W. Pflügl and
U.M. Titulaer
Physica A: Statistical Mechanics and its Applications, 1995, vol. 214, issue 1, 52-67
Abstract:
We consider a collection of droplets during the late stage of phase separation in a closed system. Its coarsening is driven by surface energy and leads asymptotically to a linear growth of the mean droplet volume with time (Ostwald ripening). The droplets grow either from the supersaturated uncondensed phase (coalescence) or by collisions with subsequent fusion (coagulation). The combination of both mechanisms leads asymptotically to a self-similar evolution of the size distribution of the droplets when the coagulation kernel is homogeneous with degree zero. We calculate the scaled droplet size distribution for Brownian and constant kernel and compare the effects of coagulation with the effects of correlation and screening discussed in the literature. We compare our results for the asymptotic scaled distribution with computer simulations for the combined coalescence and coagulation processes.
Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719400220N
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:214:y:1995:i:1:p:52-67
DOI: 10.1016/0378-4371(94)00220-N
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().