EconPapers    
Economics at your fingertips  
 

Approximations to the two-hole ground state of the Hubbard-Anderson model: a numerical test

M.O. Elout, M.R.M.J. Traa and W.J. Caspers

Physica A: Statistical Mechanics and its Applications, 1995, vol. 215, issue 1, 152-169

Abstract: Several resonating-valence-bond-type states are being considered as an approximation of the two-hole ground state of the two-dimensional Hubbard-Anderson model. These states have been carefully constructed by Traa and Caspers with such algebraic properties, as to optimise different contributions of the Hubbard-Anderson hamiltonian. In this paper, the different contributions to their energies are calculated for lattices with sizes from 8 × 8 up to 16 × 16 and periodic boundary conditions, using a variational Monte-Carlo method. We show which state is lowest in energy and, more important, why this is so. In accordance with the optimal state from this tested set, we propose a bound state. It will be shown that this state is indeed the most stable state.

Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437194002704
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:215:y:1995:i:1:p:152-169

DOI: 10.1016/0378-4371(94)00270-4

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:215:y:1995:i:1:p:152-169