EconPapers    
Economics at your fingertips  
 

The Schouten et al. model applied to polymer mixture solutions

Mustafa Gençaslan, Mustafa Keskin and Paul H.E. Meijer

Physica A: Statistical Mechanics and its Applications, 1995, vol. 216, issue 4, 397-406

Abstract: The lattice-gas model of Schouten, ten Seldam and Trappeniers is extended to mixtures of polymers. This model allows for three options on each lattice site: a molecule of type one, a molecule of type two or a hole. It describes a binary gas-liquid system in the molecular-field approximation. Following Flory, the chain length r is introduced as additional parameter in order to express the fact that the molecules occupy several lattice sites. In this paper we introduce two Flory chain length parameters (leading to the model of Tompa) in order to describe polymer mixtures in the presence of their vapor phase. The model can also be applied to a ternary mixture consisting of two polymers in a common solvent.

Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719500011U
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:216:y:1995:i:4:p:397-406

DOI: 10.1016/0378-4371(95)00011-U

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:216:y:1995:i:4:p:397-406