Phase transitions of fermions coupled to a gauge field: a quantum Monte Carlo approach
M. Hettler and
K. Ziegler
Physica A: Statistical Mechanics and its Applications, 1995, vol. 218, issue 3, 461-470
Abstract:
A grand canonical system of non-interacting fermions on a square lattice is considered at zero temperature. Three different phases exist: an empty lattice, a completely filled lattice and a liquid phase which interpolates between the other two phases. The Fermi statistics can be changed into a Bose statistics by coupling a statistical gauge field to the fermions. Using a quantum Monte Carlo method we investigate the effect of the gauge field on the critical properties of the lattice fermions. It turns out that there is no significant change of the phase diagram or the density of particles due to the gauge field even at the critical points. This result supports a recent conjecture by Huang and Wu that certain properties of a three-dimensional flux line system (which is equivalent to two-dimensional hard-core bosons) can be explained with non-interacting fermion models.
Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719500139X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:218:y:1995:i:3:p:461-470
DOI: 10.1016/0378-4371(95)00139-X
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().