Hyperbolic type transport equations
L.S. García-Colín and
M.A. Olivares-Robles
Physica A: Statistical Mechanics and its Applications, 1995, vol. 220, issue 1, 165-172
Abstract:
In recent years hyperbolic type transport equations have acquired a great deal of importance in problems ranging from theoretical physics to biology. In spite of their greater mathematical difficulty as compared with their parabolic type analogs arising from the framework of Linear Irreversible Thermodynamics, they have, in many ways, superseded the latter ones. Although the use of this type of equations is well known since the last century through the telegraphist equation of electromagnetic theory, their use in studying several problems in transport theory is hardly fifty years old. In fact the first appearance of a hyperbolic type transport equation for the problem of heat conduction dates back to Cattaneos' work in 1948. Three years later, in 1951 S. Goldstein showed how in the theory of stochastic processes this type of an equation is obtained in the continuous limit of a one-dimensional persistent random walk problem. After that, other phenomenological derivations have been offered for such equations.
Date: 1995
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719500122N
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:220:y:1995:i:1:p:165-172
DOI: 10.1016/0378-4371(95)00122-N
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().