Percolation thresholds and percolation conductivities of octagonal and dodecagonal quasicrystalline lattices
F Babalievski
Physica A: Statistical Mechanics and its Applications, 1995, vol. 220, issue 3, 245-250
Abstract:
The octagonal and dodecagonal quaislattices were generated by means of the grid method. Monte Carlo simulation and cluster counting procedure were used for numerical determination of the site and bond percolation thresholds. Two types of connectivity called ferromagnetic and chemical were studied. The estimated site percolation thresholds are 0.5435… and 0.585… for octagonal lattice and 0.617… and 0.628… for dodecagonal lattice respectively. The obtained spanning fraction curves (for site percolation) seem to approach the 50% value at the percolation threshold. The site percolation conductivity for these lattices was studied by means of a transfer-matrix approach. The critical behavior was found to be the same as for the periodic lattices.
Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719500260E
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:220:y:1995:i:3:p:245-250
DOI: 10.1016/0378-4371(95)00260-E
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().