Electron spectral density in a disordered system of hard sphere scatterers
B.u Felderhof and
A Kauerauf
Physica A: Statistical Mechanics and its Applications, 1995, vol. 220, issue 3, 376-389
Abstract:
The spectral density of an electron propagating in a disordered system of hard sphere scatterers is studied by use of a self-consistent approximation for the self-energy. The spectral density at fixed wavenumber is found to be a single-peaked function of energy. The approximation yields a sharp wavenumber-dependent band edge. For large wavenumbers the spectral density is well approximated by a Lorentzian, but for small wavenumbers it is dominated by a characteristic square root singularity at the band edge.
Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719500218V
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:220:y:1995:i:3:p:376-389
DOI: 10.1016/0378-4371(95)00218-V
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().