Renormalization group, scaling and universality in spanning probability for percolation
J.-P. Hovi and
Amnon Aharony
Physica A: Statistical Mechanics and its Applications, 1995, vol. 221, issue 1, 68-79
Abstract:
The spanning probability function for percolation is discussed using ideas from the renormalization group theory. We find that, apart from a few scale factors, the scaling functions are determined by the fixed point, and therefore are universal for every system with the same dimensionality, spanning rule, aspect ratio and boundary conditions, being independent of lattice structure and (finite) interaction length. This yields general results concerning the finite-size corrections and other corrections to scaling in general dimensions. For the special case of the square lattice with free boundaries, this theory, combined with duality arguments, give strong relations among different derivatives of the spanning function with respect to the scaling variables, thus yielding several new universal amplitude ratios and allowing systematic study of the corrections to scaling. The theoretical predictions are numerically confirmed with excellent accuracy.
Date: 1995
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437195002729
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:221:y:1995:i:1:p:68-79
DOI: 10.1016/0378-4371(95)00272-9
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().