Critical behavior of an absorbing phase transition in an interacting monomer-dimer model
Hyunggyu Park and
Heungwon Park
Physica A: Statistical Mechanics and its Applications, 1995, vol. 221, issue 1, 97-103
Abstract:
We study a monomer-dimer model with repulsive interactions between the same species in one dimension. With infinitely strong interactions the model exhibits a continuous transition from a reactive phase to an inactive phase with two equivalent absorbing states. Static and dynamic Monte Carlo simulations show that the critical behavior at the transition is different from the conventional directed percolation universality class but is consistent with that of the models with the mass conservation of modulo 2. The values of static and dynamic critical exponents are compared with those of other models. We also show that the directed percolation universality class is recovered when a symmetry-breaking field is introduced.
Date: 1995
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437195002486
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:221:y:1995:i:1:p:97-103
DOI: 10.1016/0378-4371(95)00248-6
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().