Anti-persistent correlated random walks
V. Halpern
Physica A: Statistical Mechanics and its Applications, 1996, vol. 223, issue 3, 329-336
Abstract:
An analysis is presented of anti-persistent random walks, in which after any step there is an increased probability of returning to the original site. In addition to their intrinsic interest in the theory of random walks, they are relevant to certain problems in hopping transport, such as ionic conduction. An analysis is presented of such walks on hypercubic lattices in an arbitrary number of dimensions, for both discrete time and continuous time random walks, and exact formulae are derived for the mean square distance travelled in n steps or in time t. The relevance of these results to the observed frequency dependence of ionic conductivity is discussed.
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437195003649
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:223:y:1996:i:3:p:329-336
DOI: 10.1016/0378-4371(95)00364-9
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().