Criticality in driven cellular automata with defects
Bosiljka Tadić and
Ramakrishna Ramaswamy
Physica A: Statistical Mechanics and its Applications, 1996, vol. 224, issue 1, 188-198
Abstract:
We study three models of driven sandpile-type automata in the presence of quenched random defects. When the dynamics is conservative, all these models, termed the random sites (A), random bonds (B), and random slopes (C), self-organize into a critical state. For model C the concentration-dependent exponents are nonuniversal. In the case of nonconservative defects, the asymptotic state is subcritical. Possible defect-mediated nonequilibrium phase transitions are also discussed.
Date: 1996
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437195003223
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:224:y:1996:i:1:p:188-198
DOI: 10.1016/0378-4371(95)00322-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().