Economics at your fingertips  

Finitized conformal spectrum of the Ising model on the cylinder and torus

O'Brien, David L., Paul A. Pearce and S. Ole Warnaar

Physica A: Statistical Mechanics and its Applications, 1996, vol. 228, issue 1, 63-77

Abstract: The spectrum of the critical Ising model on a lattice with cylindrical and toroidal boundary conditions is calculated by commuting transfer matrix methods. Using a simple truncation procedure, we obtain the natural finitizations of the conformal spectra recently proposed by Melzer. These finitizations imply polynomial identities which in the large lattice limit give rise to the Rogers—Ramanujan identities for the c = 12 Virasoro characters.

Date: 1996
References: View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:phsmap:v:228:y:1996:i:1:p:63-77