Correlation regimes in systems of soft spherical particles studied by their Lyapunov exponents
István Borzsák,
András Baranyai and
Harald A. Posch
Physica A: Statistical Mechanics and its Applications, 1996, vol. 229, issue 1, 93-108
Abstract:
We performed molecular dynamics simulations of soft spherical particles over wide ranges of densities and temperatures corresponding to fluids, glasses and crystalline solids, and calculated the full Lyapunov spectra of these systems. For either phase corresponding exponents essentially scale with the square-root of the temperature in accordance with kinetic theory. The density dependence is more pronounced and less systematic. The shape of the spectrum of a glass is different from that of a crystalline solid at the same density and temperature and resembles the spectrum of the initial dense liquid-like phase. For dilute gases the sum of the positive exponents approaches zero and is increasingly dominated by the largest exponent. Although systematic changes of the Lyapunov spectra were observed, it seems that the spectral shape does not uniquely determine the phase of the system.
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719500422X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:229:y:1996:i:1:p:93-108
DOI: 10.1016/0378-4371(95)00422-X
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().