EconPapers    
Economics at your fingertips  
 

Strong nonlinear rupture theory of thin free liquid films

Chi-Chuan Hwang,, Jun-Liang Chen,, Li-Fu Shen, and Cheng-I Weng,

Physica A: Statistical Mechanics and its Applications, 1996, vol. 231, issue 4, 448-460

Abstract: A simplified governing equation with high-order effects is formulated after a procedure of evaluating the order of magnitude. Furthermore, the nonlinear evolution equations are derived by the Kármán-Polhausen integral method with a specified velocity profile. Particularly, the effects of surface tension, van der Waals potential, inertia and high-order viscous dissipation are taken into consideration in these equation. The numerical results reveal that the rupture time of free film is much shorter than that of a film on a flat plate. It is shown that because of a more complete high-order viscous dissipation effect discussed in the present study, the rupture process of present model is slower than is predicted by the high-order long wave theory.

Keywords: Strong nonlinear rupture; Thin free films; Van der Waals potential; Surface tension; Integral method (search for similar items in EconPapers)
Date: 1996
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437196001057
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:231:y:1996:i:4:p:448-460

DOI: 10.1016/0378-4371(96)00105-7

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:231:y:1996:i:4:p:448-460