Dynamics of domains in diluted antiferromagnets
U. Nowak,
J. Esser and
K.D. Usadel
Physica A: Statistical Mechanics and its Applications, 1996, vol. 232, issue 1, 40-50
Abstract:
We investigate the dynamics of two-dimensional site-diluted Ising antiferromagnets. In an external magnetic field these highly disordered magnetic systems have a domain structure which consists of fractal domains with sizes on a broad range length scales. We focus on the dynamics of these systems during the relaxation from a long-range ordered initial state to the disordered fractal-domain state after applying an external magnetic field. The equilibrium state with applied field consists of fractal domains with a size distribution which follows a power law with an exponential cutoff. The dynamics of the systems can be understood as a growth process of this fractal-domain state in such a way that the equilibrium distribution of domains develops during time. Following these ideas quantitatively we derive a simple description of the time dependence of the order parameter. The agreement with simulations is excellent.
Keywords: Ising-models; Random magnets; Dynamics (search for similar items in EconPapers)
Date: 1996
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437196001331
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:232:y:1996:i:1:p:40-50
DOI: 10.1016/0378-4371(96)00133-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().