Small-angle X-ray scattering studies of semidilute polystyrene-cyclohexane solutions
Yonglin Xie,
Karl F. Ludwig,
Rama Bansil,
Patrick D. Gallagher,
Xingxiang Cao and
Guarionex Morales
Physica A: Statistical Mechanics and its Applications, 1996, vol. 232, issue 1, 94-108
Abstract:
Small-angle X-ray scattering was used to study semidilute polystyrene-cyclohexane solutions at temperatures from below the coexistence curve to above the Θ point. Deviations from Θ point concentration scaling were observed as the coexistence line was approached. A new scaling form is suggested which combines the concentration scaling near the Θ point with the temperature scaling near a spinodal; it collapses the experimental data. This approach assumes that the “bare” correlation length ge0 scales as c−1. The observed low-angle “excess scattering” is best described by the Debye-Bueche random heterogeneity model, rather than the attractive potential model of Medjahdi and co-workers. The “excess scattering” is virtually independent of temperature, suggesting that the inhomogeneities which cause it are not affected by the approaching phase transformation.
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/037843719600218X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:232:y:1996:i:1:p:94-108
DOI: 10.1016/0378-4371(96)00218-X
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().