Fluctuating hydrodynamics approach to chemical reactions
I. Pagonabarraga,
A. Pérez-Madrid and
J.M. Rubí
Physica A: Statistical Mechanics and its Applications, 1997, vol. 237, issue 1, 205-219
Abstract:
We have used the thermodynamical description of a chemical reaction as a diffusion process along an internal coordinate to analyze fluctuations in the density of the constituents, which are treated under the framework of fluctuating hydrodynamics. We then obtain a Langevin equation for the density, as a function of the internal coordinate, whose stochastic source statisfies a fluctuation-dissipation theorem. After contraction of the description, by means of integration in the internal coordinate, we derive the Langevin equation for the concentration of reactants and products as well as the statistical properties of the random source which agree with the corresponding results obtained by means of Keizer's theory. Application of the formalism is illustrated by considering particular cases. An extension to coupled chemical reactions is also discussed.
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437196003779
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:237:y:1997:i:1:p:205-219
DOI: 10.1016/S0378-4371(96)00377-9
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().