Nonequilibrium potential approach: Local and global stability of stationary patterns in an activator-inhibitor system with fast inhibition
Germán Drazer and
Horacio S. Wio
Physica A: Statistical Mechanics and its Applications, 1997, vol. 240, issue 3, 571-585
Abstract:
We study the formation and global stability of stationary patterns in a finite one-dimensional reaction-diffusion model of the activator-inhibitor type. The analysis proceeds through the study of the nonequilibrium potential or Lyapunov functional for this system considering the fast inhibitor case and, in order to obtain analytical results, the adoption of a piecewise linear version of the model. We have studied the changes in relative stability among the different patterns as the ratio between the diffusion coefficients is varied and have discussed the meaning of the different contributions to the nonequilibrium potential.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197000472
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:240:y:1997:i:3:p:571-585
DOI: 10.1016/S0378-4371(97)00047-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().