Finite-size scaling analysis of biased diffusion on fractals
Giovanni Sartoni and
Attilio L. Stella
Physica A: Statistical Mechanics and its Applications, 1997, vol. 241, issue 3, 453-468
Abstract:
Diffusion on a T fractal lattice under the influence of topological biasing fields is studied by finite size scaling methods. This allows to avoid proliferation and singularities which would arise in a renormalization group approach on infinite system as a consequence of logarithmic diffusion. Within the scheme, logarithmic diffusion is proved on the basis of an analysis of various temporal scales such as first passage time moments and survival probability characteristic time. This confirms and puts on firmer basis previous renormalization group results. A careful study of the asymptotic occupation probabilities of different kinds of lattice points allows to elucidate the mechanism of trapping into dangling ends, which is responsible of the logarithmic time dependence of average displacement.
Keywords: Logarithmic diffusion; Bias; Finite size scaling (search for similar items in EconPapers)
Date: 1997
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197001660
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:241:y:1997:i:3:p:453-468
DOI: 10.1016/S0378-4371(97)00166-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().