Scaling behavior in economics: The problem of quantifying company growth
Luís A Nunes Amaral,
Sergey V Buldyrev,
Shlomo Havlin,
Philipp Maass,
Michael Salinger,
H Eugene Stanley and
Michael H.R Stanley
Physica A: Statistical Mechanics and its Applications, 1997, vol. 244, issue 1, 1-24
Abstract:
Inspired by work of both Widom and Mandelbrot, we analyze the Computstat database comprising all publicly traded United States manufacturing companies in the years 1974–1993. We find that the distribution of company size remains stable for the 20 years we study, i.e., the mean value and standard deviation remain approximately constant. We study the distribution of sizes of the “new” companies in each year and find it to be well approximated by a log- normal. We find (i) the distribution of the logarithm of the growth rates, for a fixed growth period of T years, and for companies with approximately the same size S displays an exponential “tent-shaped” form rather than the bell-shaped Gaussian, one would expect for a log-normal distribution, and (ii) the fluctuations in the growth rates — measured by the width of this distribution σT — decrease with company size and increase with time T. We find that for annual growth rates (T = 1), σT ∼ S−β, and that the exponent β takes the same value, within the error bars, for several measures of the size of a company. In particular, we obtain β = 0.20 ± 0.03 for sales, β = 0.18 ± 0.03 for number of employees, β = 0.18±0.03 for assets, β = 0.18 ± 0.03 for cost of goods sold, and β = 0.20 ± 0.03 for propert, plant, and equipment. We propose models that may lead to some insight into these phenomena. First, we study a model in which the growth rate of a company is affected by a tendency to retain an “optimal” size. That model leads to an exponential distribution of the logarithm of growth rate in agreement with the empirical results. Then, we study a hierarchical tree-like model of a company that enables us to relate β to parameters of a company structure. We find that β = −1n Π/1nz, where z defines the mean branching ratio of the hierarchical tree and Π is the probability that the lower levels follow the policy of higher levels in the hierarchy. We also study the output distribution of growth rates of this hierarchical model. We find that the distribution is consistent with the exponential form found empirically. We also discuss the time dependence of the shape of the distribution of the growth rates.
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (72)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197003014
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:244:y:1997:i:1:p:1-24
DOI: 10.1016/S0378-4371(97)00301-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().