Studies of traffic flow phenomena using the VEDENS computer code
L.D. Howe
Physica A: Statistical Mechanics and its Applications, 1997, vol. 246, issue 1, 157-171
Abstract:
The VEDENS computer code models traffic flows on unidirectional, multilane highways, including on- and off-ramps. The logic behind the code is explained, including driver decision making. Calculations have been carried out for from 1- to 6-lane flow. The fundamental flow diagram has been plotted for all lane configurations and calculations of saturation behaviour have been made for on-ramp and off-ramp flows and short-term, total blockages. It is concluded that the efficiency of a highway decreases significantly when the number of lanes is increased to more than four. Increasing the number of lanes is beneficial for on-ramp flows, but increasing the number to more than three has no effect on the maximum capacity when 20% or more of the vehicles desire to exit via a given off-ramp. When the highway becomes totally blocked for a short time, the evolution of the node of stationary traffic can be predicted.
Keywords: Traffic; Highway; Simulation; Modelling (search for similar items in EconPapers)
Date: 1997
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197003555
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:246:y:1997:i:1:p:157-171
DOI: 10.1016/S0378-4371(97)00355-5
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().