Melting of a colloidal crystal
P.S. Kuhn,
A. Diehl,
Y. Levin and
M.C. Barbosa
Physica A: Statistical Mechanics and its Applications, 1997, vol. 247, issue 1, 235-246
Abstract:
A melting transition for a system of hard spheres interacting by a repulsive Yukawa potential of a DLVO form is studied. To find the location of the phase boundary, we propose a simple theory to calculate the free energies for the coexisting liquid and solid. The free energy for the liquid phase is approximated by a virial expansion. The free energy of the crystalline phase is calculated in the spirit of the Lenard-Jonnes and Devonshire (LJD) theory. The phase boundary is found by equating the pressures and chemical potentials of the coexisting phases. When the approximation leading to the equation of state for the liquid breaks down, the first-order transition line is also obtained by applying the Lindemann criterion to the solid phase. Our results are then compared with the Monte Carlo simulations.
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197004081
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:247:y:1997:i:1:p:235-246
DOI: 10.1016/S0378-4371(97)00408-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().