Microstructure and phase diagrams of polymer gels
Sergei Panyukov and
Yitzhak Rabin
Physica A: Statistical Mechanics and its Applications, 1998, vol. 249, issue 1, 239-244
Abstract:
Recently we developed [Panyukov and Rabin, Macromolecules 29 (1996) 7960] a phenomenological theory of randomly cross-linked polymer networks, based on the separation of solid-like and liquid-like degrees of freedom and taking into account the frozen inhomogeneity of network structure. We calculated the scattering spectra of weakly charged, randomly cross-linked polymer gels in good, poor and in Θ solvents [Panyukov and Rabin, Macromolecules 29 (1996) 8530; Rabin and Panyukov, Macromolecules 30 (1996) 301]. For some values of the thermodynamic parameters, the competition between poor solubility, electrostatics and network elasticity leads to the divergence of the structure factor at a wave vector q∗, signaling the onset of microphase separation in the gel. Depending on the choice of thermodynamic parameters, the characteristic wavelength 1/q∗ varies from microscopic to macroscopic length scales.
Keywords: Polymer gels; Static inhomogeneities (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197004718
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:249:y:1998:i:1:p:239-244
DOI: 10.1016/S0378-4371(97)00471-8
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().