Ordered and disordered defect chaos
Glen D. Granzow and
Hermann Riecke
Physica A: Statistical Mechanics and its Applications, 1998, vol. 249, issue 1, 27-35
Abstract:
Defect chaos is studied numerically in coupled Ginzburg–Landau equations for parametrically driven waves. The motion of the defects is traced in detail yielding their lifetimes, annihilation partners, and distances traveled. In a regime in which in the one-dimensional case the chaotic dynamics is due to double phase slips, the two-dimensional system exhibits a strongly ordered stripe pattern. When the parity-breaking instability to traveling waves is approached this order vanishes and the correlation function decays rapidly. In the ordered regime the defects have a typical lifetime, whereas in the disordered regime the lifetime distribution is exponential. The probability of large defect loops is substantially larger in the disordered regime.
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197004287
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:249:y:1998:i:1:p:27-35
DOI: 10.1016/S0378-4371(97)00428-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().