Realistic models of biological motion
Imre Derényi and
Tamás Vicsek
Physica A: Statistical Mechanics and its Applications, 1998, vol. 249, issue 1, 397-406
Abstract:
The origin of biological motion can be traced back to the function of molecular motor proteins. Cytoplasmic dynein and kinesin transport organelles within our cells moving along a polymeric filament, the microtubule. The motion of the myosin molecules along the actin filaments is responsible for the contraction of our muscles. Recent experiments have been able to reveal some important features of the motion of individual motor proteins, and a new statistical physical description – often referred to as “thermal ratchets” – has been developed for the description of motion of these molecules. In this approach, the motors are considered as Brownian particles moving along one-dimensional periodic structures due to the effect of nonequilibrium fluctuations. Assuming specific types of interaction between the particles the models can be made more realistic. We have been able to give analytic solutions for our model of kinesin with elastically coupled Brownian heads and for the motion of the myosin filament where the motors are connected through a rigid backbone. Our theoretical predictions are in a very good agreement with the various experimental results. In addition, we have considered the effects arising as a result of interaction among a large number of molecular motors, leading to a number of novel cooperative transport phenomena.
Keywords: Thermal ratchets; Molecular motors (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197004986
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:249:y:1998:i:1:p:397-406
DOI: 10.1016/S0378-4371(97)00498-6
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().