The marriage problem and the fate of bachelors
Th.M. Nieuwenhuizen
Physica A: Statistical Mechanics and its Applications, 1998, vol. 252, issue 1, 178-198
Abstract:
In the marriage problem, a variant of the bi-parted matching problem, each member has a “wish-list” expressing his/her preference for all possible partners; this list consists of random, positive real numbers drawn from a certain distribution. One searches the lowest cost for the society, at the risk of breaking up pairs in the course of time. Minimization of a global cost function (Hamiltonian) is performed with statistical mechanics techniques at a finite fictitious temperature. The problem is generalized to include bachelors, needed in particular when the groups have different size, and polygamy. Exact solutions are found for the optimal solution (T=0). The entropy is found to vanish quadratically in T. Also, other evidence is found that the replica symmetric solution is exact, implying at most a polynomial degeneracy of the optimal solution. Whether bachelors occur or not, depends not only on their intrinsic qualities, or lack thereof, but also on global aspects of the chance for pair formation in society.
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197006237
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:252:y:1998:i:1:p:178-198
DOI: 10.1016/S0378-4371(97)00623-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().