EconPapers    
Economics at your fingertips  
 

Log-periodic oscillations for biased diffusion on random lattice

Dietrich Stauffer and Didier Sornette

Physica A: Statistical Mechanics and its Applications, 1998, vol. 252, issue 3, 271-277

Abstract: Random walks with a fixed bias direction on randomly diluted cubic lattices far above the percolation threshold exhibit log-periodic oscillations in the effective exponent versus time. A scaling argument accounts for the numerical results in the limit of large biases and small dilution and shows the importance of the interplay of these two ingredients in the generation of the log-periodicity. These results show that log-periodicity is the dominant effect compared to previous predictions of and reports on anomalous diffusion.

Date: 1998
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437197006808
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:252:y:1998:i:3:p:271-277

DOI: 10.1016/S0378-4371(97)00680-8

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:252:y:1998:i:3:p:271-277