A new approach to computing the scaling exponents in fluid turbulence from first principles
Victor I. Belinicher,
L’vov, Victor S. and
Itamar Procaccia
Physica A: Statistical Mechanics and its Applications, 1998, vol. 254, issue 1, 215-230
Abstract:
In this short paper we describe the essential ideas behind a new consistent closure procedure for the calculation of the scaling exponents ζn of the nth order correlation functions in fully developed hydrodynamic turbulence, starting from first principles. The closure procedure is constructed to respect the fundamental rescaling symmetry of the Euler equation. The starting point of the procedure is an infinite hierarchy of coupled equations that are obeyed identically with respect to scaling for any set of scaling exponents ζn. This hierarchy was discussed in detail in a recent publication [V.S. L’vov and I. Procaccia, Physica A (1998), in press, chao-dyn/9707015]. The scaling exponents in this set of equations cannot be found from power counting. In this short paper we discuss in detail low order non-trivial closures of this infinite set of equations, and prove that these closures lead to the determination of the scaling exponents from solvability conditions. The equations under consideration after this closure are nonlinear integro-differential equations, reflecting the nonlinearity of the original Navier–Stokes equations. Nevertheless, they have a very special structure such that the determination of the scaling exponents requires a procedure that is very similar to the solution of linear homogeneous equations, in which amplitudes are determined by fitting to the boundary conditions in the space of scales. The renormalization scale that is necessary for any anomalous scaling appears at this point. The Hölder inequalities on the scaling exponents select the renormalization scale as the outer scale of turbulence L.
Keywords: Turbulence; Universal Statistics; Anomalous Scaling; Multifractals (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198000223
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:254:y:1998:i:1:p:215-230
DOI: 10.1016/S0378-4371(98)00022-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().