EconPapers    
Economics at your fingertips  
 

Streets tree networks and urban growth: Optimal geometry for quickest access between a finite-size volume and one point

A. Bejan and G.A. Ledezma

Physica A: Statistical Mechanics and its Applications, 1998, vol. 255, issue 1, 211-217

Abstract: The geometric form of the tree network is deduced from a single mechanism. The discovery that the shape of a heat-generating volume can be optimized to minimize the thermal resistance between the volume and a point heat sink, is used to solve the kinematics problem of minimizing the time of travel between a volume (or area) and one point. The optimal path is constructed by covering the volume with a sequence of volume sizes (building blocks), which starts with the smallest size and continues with stepwise larger sizes (assemblies). Optimized in each building block is the overall shape and the angle between constituents. The speed of travel may vary from one assembly size to the next, however, the lowest speed is used to reach the infinity of points located in the smallest volume elements. The volume-to-point path that results is a tree network. A single design principle – the geometric optimization of volume-to-point access – determines all the features of the tree network.

Keywords: Tree networks; Streets; Urban growth; Fractal; Constructal (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198000855
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:255:y:1998:i:1:p:211-217

DOI: 10.1016/S0378-4371(98)00085-5

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:255:y:1998:i:1:p:211-217