Exact derivation of the Langevin and master equations for harmonic quantum Brownian motion
Edgardo T. Garcia-Alvarez and
Fabián H. Gaioli
Physica A: Statistical Mechanics and its Applications, 1998, vol. 257, issue 1, 298-302
Abstract:
A many-particle Hamiltonian, where the interaction term conserves the number of particles, is considered. A master equation for the populations of the different levels is derived in an exact way. It results in a local equation with time-dependent coefficients, which can be identified with the transition probabilities in the golden rule approximation. A reinterpretation of the model as a set of coupled harmonic oscillators enables one to obtain for one of them an exact local Langevin equation, with time-dependent coefficients.
Keywords: Master equation; Langevin equation; Brownian motion; Irreversibility (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198001484
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:257:y:1998:i:1:p:298-302
DOI: 10.1016/S0378-4371(98)00148-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().