Local state space geometry and thermal relaxation in complex landscapes: the spin-glass case
Paolo Sibani
Physica A: Statistical Mechanics and its Applications, 1998, vol. 258, issue 3, 249-262
Abstract:
A simple geometrical characterization of configuration space neighborhoods of local energy minima in spin glass landscapes is found by exhaustive search. Combined with previous Monte Carlo investigations of thermal domain growth, it allows a discussion of the connection between real and configuration space descriptions of low temperature relaxational dynamics. We argue that the part of state-space corresponding to a single growing domain is adequately modeled by a hierarchically organized set of states and that thermal (meta)stability in spin glasses is related to the nearly exponential local density of states present within each trap.
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198002635
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:258:y:1998:i:3:p:249-262
DOI: 10.1016/S0378-4371(98)00263-5
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().