EconPapers    
Economics at your fingertips  
 

Dynamics of a creep-slip model of earthquake faults

Peter Hähner and Yannis Drossinos

Physica A: Statistical Mechanics and its Applications, 1998, vol. 260, issue 3, 391-417

Abstract: Starting off from the relationship between time-dependent friction and velocity softening we present a generalization of the continuous, one-dimensional homogeneous Burridge–Knopoff (BK) model by allowing for displacements by plastic creep and rigid sliding. The evolution equations describe the coupled dynamics of an order parameter-like field variable (the sliding rate) and a control parameter field (the driving force). In addition to the velocity-softening instability and deterministic chaos known from the BK model, the model exhibits a velocity-strengthening regime at low displacement rates which is characterized by anomalous diffusion and which may be interpreted as a continuum analogue of self-organized criticality (SOC). The governing evolution equations for both regimes (a generalized time-dependent Ginzburg–Landau equation and a non-linear diffusion equation, respectively) are derived and implications with regard to fault dynamics and power-law scaling of event-size distributions are discussed. Since the model accounts for memory friction and since it combines features of deterministic chaos and SOC it displays interesting implications as to (i) material aspects of fault friction, (ii) the origin of scaling, (iii) questions related to precursor events, aftershocks and afterslip, and (iv) the problem of earthquake predictability. Moreover, by appropriate re-interpretation of the dynamical variables the model applies to other SOC systems, e.g. sandpiles.

Keywords: Earthquakes; Memory friction; Creep-slip; Criticality (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198003148
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:260:y:1998:i:3:p:391-417

DOI: 10.1016/S0378-4371(98)00314-8

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:260:y:1998:i:3:p:391-417