A phase field model of the impingement of solidifying particles
James A. Warren,
W.C. Carter and
Ryo Kobayashi
Physica A: Statistical Mechanics and its Applications, 1998, vol. 261, issue 1, 159-166
Abstract:
We propose a model of the impingement of solidifying crystalline particles, the ensuing grain boundary formation, and grain coarsening. This model improves upon previous theoretical descriptions of this phenomenon, in that it has the proper behavior under rotations and is easy to implement numerically. Also, insight into the model is straightforward since the parameters are physically motivated, and anisotropy in both the liquid–solid and grain boundary energies can be introduced in a natural manner. A one dimensional analytic solution is presented.
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198003811
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:261:y:1998:i:1:p:159-166
DOI: 10.1016/S0378-4371(98)00381-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().