Pattern formation in annular convection
William F. Langford and
Dan D. Rusu
Physica A: Statistical Mechanics and its Applications, 1998, vol. 261, issue 1, 188-203
Abstract:
This study of spatio-temporal pattern formation in an annulus is motivated by two physical problems on vastly different scales. The first is atmospheric convection in the equatorial plane between the warm surface of the Earth and the cold tropopause, modeled by the two dimensional Boussinesq equations. The second is annular electroconvection in a thin smectic film, where experiments reveal the birth of convection-like vortices in the plane as the electric field intensity is increased. This is modeled by two dimensional Navier–Stokes equations coupled with a simplified version of Maxwell’s equations. The two models share fundamental mathematical properties and satisfy the prerequisites for application of O(2)-equivariant bifurcation theory. We show this can give predictions of interesting dynamics, including stationary and spatio-temporal patterns.
Keywords: Annular Rayleigh–Bénard convection; Annular electroconvection; Bifurcation; Steady-state mode interactions; O(2) symmetry (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198003732
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:261:y:1998:i:1:p:188-203
DOI: 10.1016/S0378-4371(98)00373-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().