EconPapers    
Economics at your fingertips  
 

Simulations of microstructural evolution: anisotropic growth and coarsening

Andrew R. Roosen and W.Craig Carter

Physica A: Statistical Mechanics and its Applications, 1998, vol. 261, issue 1, 232-247

Abstract: Two-dimensional calculations of anisotropic growth and coarsening are illustrated. This model is intended to simulate the development of microstructure in materials like silicon nitride. The model is comprised of an ensemble of polygonal particles with anisotropic surface energies and growth mobilities. Particle growth is modeled by linear kinetics with a driving force proportional to a difference between local supersaturation and an equilibrium chemical potential which depends on particle geometry and surface tension. The competition for solute for particle growth is calculated via the diffusion equation, and conservation laws determine the strength of sources (or sinks) in the diffusion equation. Statistics of particles size distributions are obtained and regimes of kinetic behavior are related to transitions from non-equilibrium to near-equilibrium kinetics. Computed microstructures are qualitatively comparable to those observed experimentally.

Keywords: Silicon nitride; Anisotropic coarsening; Ostwald ripening (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843719800377X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:261:y:1998:i:1:p:232-247

DOI: 10.1016/S0378-4371(98)00377-X

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:261:y:1998:i:1:p:232-247