Scaling properties of the cluster distribution of a critical nonequilibrium model
Marta Chaves and
MariaAugusta Santos
Physica A: Statistical Mechanics and its Applications, 1999, vol. 262, issue 3, 420-427
Abstract:
A geometric approach to critical fluctuations of a nonequilibrium model is reported. The two-dimensional majority vote model was investigated by Monte Carlo simulations on square lattices of various sizes and a detailed scaling analysis of cluster statistical and geometric properties was performed. The cluster distribution exponents and fractal dimension were found to be the same as those of the (two-dimensional) Ising model. This result, which cannot be derived purely from the known bulk critical behaviour, widens our knowledge about the range of validity of the Ising universality class for nonequilibrium systems.
Keywords: Nonequilibrium systems; Scaling; Cluster properties (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198004543
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:262:y:1999:i:3:p:420-427
DOI: 10.1016/S0378-4371(98)00454-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().