Quenched randomness at first-order transitions
John Cardy
Physica A: Statistical Mechanics and its Applications, 1999, vol. 263, issue 1, 215-221
Abstract:
A rigorous theorem due to Aizenman and Wehr asserts that there can be no latent heat in a two-dimensional system with quenched random impurities. We examine this result, and its possible extensions to higher dimensions, in the context of several models. For systems whose pure versions undergo a strong first-order transition, we show that there is an asymptotically exact mapping to the random field Ising model, at the level of the interface between the ordered and disordered phases. This provides a physical explanation for the above result and also implies a correspondence between the problems in higher dimensions, including scaling relations between their exponents. The particular example of the q-state Potts model in two dimensions has been considered in detail by various authors and we review the numerical results obtained for this case. Turning to weak, fluctuation-driven first-order transitions, we describe analytic renormalization group calculations which show how the continuous nature of the transition is restored by randomness in two dimensions.
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198004890
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:263:y:1999:i:1:p:215-221
DOI: 10.1016/S0378-4371(98)00489-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().