Application of non-commutative algebra to a soluble fermionic model
I.C. Charret,
E.V.Corrêa Silva,
S.M. de Souza,
O.Rojas Santos,
M.T. Thomaz and
C.E.I. Carneiro
Physica A: Statistical Mechanics and its Applications, 1999, vol. 264, issue 1, 204-221
Abstract:
We explore the properties of the non-commutative Grassmann algebra to obtain the high-temperature expansion of the grand canonical partition function for self-interacting fermionic systems. As an application, we consider the anharmonic fermionic oscillator, the simplest model in Quantum Mechanics with self-interacting fermions that is exactly soluble. The knowledge of the exact expression for its grand canonical partition function enables us to check the β-expansion obtained using our Grassmann-algebra-based technique.
Keywords: Mathematical methods in physics; Fermionic system; Grand canonical partition function (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437198003987
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:264:y:1999:i:1:p:204-221
DOI: 10.1016/S0378-4371(98)00398-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().